Sains
Malaysiana 53(9)(2024): 3229-3239
http://doi.org/10.17576/jsm-2024-5309-25
Enhanced Foreign Exchange Volatility Forecasting using
CEEMDAN with Optuna-Optimized Ensemble Deep Learning Model
(Ramalan Kemeruapan Tukaran Asing yang Dipertingkatkan
menggunakan CEEMDAN dengan Model Pembelajaran Mendalam Ensembel Dioptimumkan
Optuna)
REHAN KAUSAR1,
FARHAT IQBAL2,3,*, ABDUL RAZIQ2, NAVEED SHEIKH4 & ABDUL REHMAN4
1Department of Statistics, Sardar Bahadur Khan
Women's University, Quetta, Pakistan
2Department of Statistics, University of
Balochistan, Quetta, Pakistan
3Department of Mathematics, Imam Abdulrahman
Bin Faisal University, Saudi Arabia
4Department of Mathematics, University of
Balochistan, Quetta, Pakistan
Received: 9 December 2023/Accepted: 15 July 2024
Abstract
Foreign
Exchange (FX) is the largest financial market in the world, with a daily
trading volume that significantly exceeds that of stock and futures markets.
The prediction of FX volatility is a critical financial concern that has
garnered significant attention from researchers and practitioners due to its
far-reaching implications in the financial markets. This paper presents a novel
hybrid ensemble forecasting model integrating a decomposition strategy and
three deep learning (DL) models: Long Short-Term Memory (LSTM), Bidirectional
LSTM (BiLSTM), and Convolutional Neural Network (CNN). This combination
addresses individual models' limitations and further improves the accuracy and
stability of FX volatility forecasting. The proposed approach utilizes the
CEEMDAN technique to decompose volatility into multiple distinct intrinsic mode
functions (IMFs) and merges these IMFs with GARCH and EGARCH volatilities to
form the input dataset for the DL models. In addition, we employed an attention
mechanism to improve the effectiveness of the DL techniques. Furthermore, the
hyperparameters for the DL models are optimized using the Optuna algorithm. Finally, a hybrid ensemble
model for forecasting exchange rate volatility is developed by combining the
predictions of three distinct DL models. The proposed approach is evaluated
against various benchmark models using evaluation measures such as MSE, MAE,
HMSE, HMAE, RMSE, Q-LIKE, and the model confidence set (MCS) approach. The
results demonstrate that our proposed approach provides accurate and reliable
forecasts of FX volatility under different forecasting regimes, making it a
valuable tool for financial practitioners and researchers.
Keywords: Currency
exchange rate volatility; deep learning; ensemble; CEEMDAN; Optuna
Abstrak
Tukaran Asing
(FX) merupakan pasaran kewangan terbesar di dunia dengan volum dagangan harian
yang jauh melebihi pasaran saham dan pasaran hadapan. Ramalan turun naik FX merupakan
kebimbangan kewangan yang kritikal serta telah mendapat perhatian daripada
penyelidik dan pengamal kerana implikasinya yang meluas dalam pasaran kewangan.
Kajian ini membentangkan model ramalan ensembel hibrid baharu yang menyepadukan
strategi penguraian dan tiga model pembelajaran mendalam (DL): Memori Jangka
Pendek Panjang (LSTM), LSTM Dwiarah (BiLSTM) dan Rangkaian Neural Konvolusi
(CNN). Gabungan ini menangani had model individu dan meningkatkan lagi
ketepatan dan kestabilan ramalan turun naik FX. Pendekatan yang dicadangkan
menggunakan teknik CEEMDAN untuk menguraikan turun naik kepada pelbagai fungsi
mod intrinsik (IMF) yang berbeza dan menggabungkan IMF ini dengan turun naik
GARCH dan EGARCH untuk membentuk set data input bagi model DL. Di samping itu,
kami menggunakan mekanisme perhatian untuk meningkatkan keberkesanan teknik DL.
Tambahan pula, hiperparameter untuk model DL dioptimumkan menggunakan algoritma
Optuna. Akhir sekali, model ensembel hibrid untuk meramalkan turun naik kadar
pertukaran dibangunkan dengan menggabungkan ramalan tiga model DL yang berbeza.
Pendekatan yang dicadangkan dinilai berdasarkan pelbagai model penanda aras
menggunakan ukuran penilaian seperti MSE, MAE, HMSE, HMAE, RMSE, Q-like dan
pendekatan set keyakinan model (MCS). Keputusan menunjukkan bahawa pendekatan
yang dicadangkan dalam kajian ini menyediakan ramalan turun naik FX yang tepat
dan boleh dipercayai di bawah rejim ramalan yang berbeza, menjadikannya alat
yang berharga untuk pengamal dan penyelidik kewangan.
Kata kunci:
CEEMDAN; ensembel; kemeruapan kadar pertukaran mata wang; Optuna; pembelajaran
mendalam
REFERENCES
Abedin,
M.Z., Moon, M.H., Hassan, M.K. & Hajek, P. 2021. Deep learning-based
exchange rate prediction during the COVID-19 pandemic. Annals of Operations
Research. https://doi.org/10.1007/s10479-021-04420-6
Akiba, T.,
Sano, S., Yanase, T., Ohta, T. & Koyama, M. 2019. Optuna: A next-generation
hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. pp.
2623-2631. https://doi.org/10.1145/3292500.3330701
Baffour,
A.A., Feng, J. & Taylor, E.K. 2019. A hybrid artificial neural network-GJR
modeling approach to forecasting currency exchange rate volatility. Neurocomputing 365:
285-301. https://doi.org/10.1016/j.neucom.2019.07.088
Bollerslev,
T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal
of Econometrics 31(3): 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
Borovkova,
S. & Tsiamas, I. 2019. An ensemble of LSTM neural networks for
high-frequency stock market classification. Journal of Forecasting 38(6): 600-619. https://doi.org/10.1002/for.2585
Colominas,
M.A., Schlotthauer, G. & Torres, M.E. 2014. Improved complete ensemble EMD:
A suitable tool for biomedical signal processing. Biomedical Signal
Processing and Control 14: 19-29. https://doi.org/10.1016/j.bspc.2014.06.009
Dauphin,
Y.N., Fan, A., Auli, M. & Grangier, D. 2017. Language modeling with gated
convolutional networks. ICML ’17: Proceedings of the 34th International Conference on Machine Learning 70: 933-941.
Dhamija,
A.K. & Bhalla, V.K. 2010. Financial time series forecasting: Comparison of
various arch models. Global Journal of Finance and Management 2(1):
159-172. http://www.ripublication.com/gjfm.htm
Diebold,
F.X. & Mariano, R.S. 1995. Comparing predictive accuracy. Journal
of Business and Economic Statistics 13(3): 253-263. https://doi.org/10.1198/073500102753410444
Dragomiretskiy,
K. & Zosso, D. 2013. Variational mode decomposition. IEEE
Transactions on Signal Processing 62(3): 531-544. https://doi.org/10.1109/TSP.2013.2288675
Engle, R.F.
1982. Autoregressive conditional heteroskedasticity with estimates of the
variance of United Kingdom inflation. Econometrica 50(4): 987-1008. https://doi.org/10.2307/1912773
Gamboa, D.A.
2017. A comparative study of volatility forecasting methods. The
European Journal of Finance 23(7-9): 663-681.
Granata, F.
& Di Nunno, F. 2021. Forecasting evapotranspiration in different climates
using ensembles of recurrent neural networks. Agricultural
Water Management 255: 107040. https://doi.org/10.1016/j.agwat.2021.107040
Gu, J.,
Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang,
G., Cai, J. & Chen, T. 2018. Recent advances in convolutional neural
networks. Pattern Recognition 77: 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
Hajizadeh,
E., Seifi, A., Zarandi, M.F. & Turksen, I.B. 2012. A hybrid modeling
approach for forecasting the volatility of S&P 500 index return. Expert
Systems with Applications 39(1): 431-436. https://doi.org/10.1016/j.eswa.2011.07.033
Hansen, P.R.,
Lunde, A. & Nason, J.M. 2011. The model confidence set. Econometrica 79(2):
453-497. https://doi.org/10.3982/ECTA5771
Henrique,
B.M., Sobreiro, V.A. & Kimura, H. 2019. Literature review: Machine learning
techniques applied to financial market prediction. Expert Systems with
Applications 124: 226-251. https://doi.org/10.1016/j.eswa.2019.01.012
Hochreiter,
S. & Schmidhuber, J. 1997. Long short-term memory. Neural
Computation 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Iqbal, F.,
Zahid, M. & Koutmos, D. 2023. Cryptocurrency trading and downside
risk. Risks 11(7): 122. https://doi.org/10.3390/risks11070122
Jung, G.
& Choi, S.Y. 2021. Forecasting foreign exchange volatility using deep
learning autoencoder-LSTM techniques. Complexity https://doi.org/10.1155/2021/6647534
Kalchbrenner,
N., Espeholt, L., Simonyan, K., Oord, A.V.D., Graves, A. & Kavukcuoglu, K.
2016. Neural machine translation in linear time. ArXiv preprint ArXiv:
1610.10099. https://doi.org/10.48550/arXiv.1610.10099
Kastner, G.,
Frühwirth-Schnatter, S. & Lopes, H.F. 2017. Efficient Bayesian inference
for multivariate factor stochastic volatility models. Journal of
Computational and Graphical Statistics 26(4): 905-917.
https://doi.org/10.1080/10618600.2017.1322091
Kausar, R.,
Iqbal, F., Raziq, A. & Sheikh, N. 2023. A hybrid approach for accurate
forecasting of exchange rate prices using VMD-CEEMDAN-GRU-ATCN model. Sains
Malaysiana 52(11): 3293-3306. http://doi.org/10.17576/jsm-2023-5211-20
Kim, H.Y.
& Won, C.H. 2018. Forecasting the volatility of stock price index: A hybrid
model integrating LSTM with multiple GARCH-type models. Expert Systems
with Applications 103: 25-37. https://doi.org/10.1016/j.eswa.2018.03.002
Li, Y.,
Jiang, S., Li, X. & Wang, S. 2021. The role of news sentiment in oil
futures returns and volatility forecasting: Data-decomposition based deep
learning approach. Energy Economics 95: 105140. https://doi.org/10.1016/j.eneco.2021.105140
Pradeepkumar,
D. & Ravi, V. 2017. Forecasting financial time series volatility using
particle swarm optimization trained quantile regression neural network. Applied
Soft Computing 58: 35-52. https://doi.org/10.1016/j.asoc.2017.04.014
Pradeepkumar,
D. & Ravi, V. 2018. Soft computing hybrids for FOREX rate prediction: A
comprehensive review. Computers & Operations Research 99:
262-284. https://doi.org/10.1016/j.cor.2018.05.020
Risse, M.
2019. Combining wavelet decomposition with machine learning to forecast gold
returns. International Journal of Forecasting 35(2): 601-615. https://doi.org/10.1016/j.cor.2018.05.020
Santhosh,
M., Venkaiah, C. & Kumar, D.V. 2019. Short-term wind speed forecasting
approach using ensemble empirical mode decomposition and deep Boltzmann machine. Sustainable
Energy, Grids and Networks 19: 100242. https://doi.org/10.1016/j.segan.2019.100242
Sobri, S., Koohi-Kamali, S. & Rahim, N.A.
2018. Solar photovoltaic generation forecasting methods: A review. Energy
Conversion and Management 156: 459-497. https://doi.org/10.1016/j.enconman.2017.11.019
Taylor, S.J.
1994. Modeling stochastic volatility: A review and comparative study. Mathematical
Finance 4(2): 183-204. https://doi.org/10.1111/j.1467-9965.1994.tb00057.x
Torres,
M.E., Colominas, M.A., Schlotthauer, G. & Flandrin, P. 2011. A complete
ensemble empirical mode decomposition with adaptive noise. Proceedings of
IEEE International Conference on Acoustics. https://10.1109/ICASSP.2011.5947265
Tripathi, M., Kumar, S. & Inani, S.K. 2020.
Exchange rate forecasting using ensemble modeling for better policy
implications. Journal of Time Series Econometrics 13(1):
43-71. https://doi.org/10.1515/jtse-2020-0013
Wu, Z.H.
& Huang, N.E. 2009. Ensemble empirical mode decomposition: A noise-assisted
data analysis method. Advances in Adaptive Data Analysis 01(01): 1-41. https://doi.org/10.1142/S1793536909000047
Zahid, M.
& Iqbal, F. 2020. Modeling the volatility of cryptocurrencies: An empirical
application of stochastic volatility models. Sains Malaysiana 49(3):
703-712. http://dx.doi.org/10.17576/jsm-2020-4903-25
Zahid, M., Iqbal, F.
& Koutmos, D. 2022. Forecasting bitcoin volatility using hybrid GARCH
models with machine learning. Risks 10(12): 237. https://doi.org/10.3390/risks10120237
*Corresponding
author; email: fsmuhammad@iau.edu.sa
|